Hispidulin potently inhibits human glioblastoma multiforme cells through activation of AMPK

Journal:	Journal of Agricultural and Food Chemistry
Manuscript ID:	jf-2010-019533.R2
Manuscript Type:	Article
Date Submitted by the Author:	23-Jul-2010
Complete List of Authors:	Way, Tzong-Der; china medical university, Department of Biological Science and Technology Lin, Ying-Chao; Institute of Biochemistry, College of Life Science, National Chung Hsing University, Taichung, Taiwan Hung, Chao-Ming; Department of General Surgery, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan Tsai, Jia-Chun; Department of Biological Science and Technology Lee, Jang-Chang; Graduate Institute of Pharmaceutical Chemistry, College of Pharmacy Chen, Yi-Lin; National Ilan University, Biotechnology Kao, JungYie; Instititu of Biochemistry

ACS Paragon Plus Environment

1 **Title**

2	Hispidulin	potently	inhibits	human	glioblastoma	multiforme	cells	through
3	activation o	of AMPK						

- 4 Ying-Chao Lin^{a,b,1}, Chao-Ming Hung^{c,1}, Jia-Chun Tsai^d, Jang-Chang Lee^{e,f}, Yi-Lin
- 5 Sophia Chen^g, Chyou-Wei Wei^h, Jung-Yie Kao^a** and Tzong-Der Way^d*
- ⁶ ^aInstitute of Biochemistry, College of Life Science, National Chung Hsing University,
- 7 Taichung, Taiwan
- ^bDivision of Neurosurgery, Buddhist Tzu Chi General Hospital, Taichung Branch
- 9 ^cDepartment of General Surgery, E-Da Hospital, I-Shou University, Kaohsiung,
- 10 Taiwan
- ¹¹ Department of Biological Science and Technology, College of Life Sciences, China
- 12 Medical University and Hospital, Taichung, Taiwan
- 13 School of Pharmacy, College of Pharmacy, China Medical University, Taichung,
- 14 Taiwan
- 15 Graduate institute of Pharmaceutical Chemistry, China Medical University, Taichung,
- 16 Taiwan
- 17 ^gGraduate Institute of Biotechnology, National Ilan University Ilan, Taiwan
- 18 ^hInstitute of Biomedical Nutrition, College of Medicines and Nursings, Hungkuang
- 19 University, Taichung, Taiwan

20 ¹Contributed equally to this work

21

22	Running title: Hispidulin activated AMPK in human brain glioblastoma multiforms
23	cells
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	

- 39 *Correspondence author:
- 40 Tzong-Der Way, Ph.D.
- 41 Department of Biological Science and Technology, College of Life Sciences, China
- 42 Medical University, Taichung, Taiwan
- No.91 Hsueh-Shih Road, Taichung, Taiwan 40402 43
- Tel: +886-4-2205-3366 ext: 5209 44
- Fax: +886-4-2203-1075 45
- 46 E-mail: tdway@mail.cmu.edu.tw
- **Co-corresponding author: 47
- 48 Jung-Yie Kao, Ph.D.
- 49 Institute of Biochemistry, College of Life Science, National Chung Hsing University,
- Taichung, Taiwan 50
- 51 Tel: (886)-4-22840468 ext: 222
- 52 Fax: (886)-4-2285-3487
- 53 E-mail: jykao@dragon.nchu.edu.tw
- 54
- 55
- 56

57 ABSTRACT

58	Glioblastoma multiforme (GBM) is the most common and lethal type of primary
59	brain tumor. Despite recent therapeutic advances in other cancers, the treatment of
60	GBM remains ineffective and essentially palliative. The current focus lies in the
61	finding of components that activate the AMP-activated protein kinase (AMPK), one
62	key enzyme thought to be activated during the caloric restriction (CR). In the present
63	study, we found that treatment of hispidulin, a flavone isolated from Saussurea
64	involucrate Kar. et Kir., resulted in dose-dependent inhibition of GBM cellular
65	proliferation. Interestingly, we show that hispidulin activated AMPK in GBM cells.
66	The activation of AMPK suppressed downstream substrates, such as the mammalian
67	target of rapamycin (mTOR) and eukaryotic initiation factor 4E-binding protein-1
68	(4E-BP1) and a general decrease in mRNA translation. Moreover, hispidulin activated
69	AMPK decreases the activity and/or expression of lipogenic enzymes, such as the
70	fatty acid synthase (FASN) and acetyl-CoA carboxylase (ACC). Furthermore,
71	hispidulin blocked the progression of the cell cycle at G1 phase and induced apoptosis
72	by inducing p53 expression and further up-regulating p21 expression in GBM cells.
73	Based on these results, we demonstrated that hispidulin has the potential to be a
74	chemoprevention and therapeutic agent against human GBM.

75

- 76 KEYWORDS: Hispidulin; AMPK, Saussurea involucrate Kar. et Kir.; Traditional
- Chinese Medicine; Glioblastoma multiforme

95 **INTRODUCTION**

96	Glioblastoma multiforme (GBM) is the most common and aggressive class of
97	malignant brain tumors. Standard therapy for GBM consists of surgical resection,
98	radiotherapy, and chemotherapy (1). Compared to the advances in the treatment of
99	other types of tumors, the overall prognosis for GBM patients with this disease
100	remains dismal, the average time for recurrence of the tumor is only 6.9 months, and
101	the 5-year survival rate for GBM patients is still less than 5% (2). Therefore, new
102	chemotherapeutic agents on the treatment of GBM are still an energetic topic.
103	Caloric restriction (CR) is a 20-40% lowering of caloric intake, known to retard
104	aging processes and to lengthen life in many organisms (3) . It has been suggested that
105	both dietary restriction and decreased nutrient-sensing pathway activity can lower the
106	incidence of age-related loss of function and disease by reducing the levels of DNA
107	damage and mutations that accumulate with age (4). Cancer is an age-related disease
108	in organisms with renewable tissues, as the incidence of most cancers increase with
109	age following an accumulation of mutations. Moderate CR lowered the incidence of
110	cancer.
111	The AMP-activated protein kinase (AMPK) is a critical monitor of cellular
112	energy status, thought to be activated during CR. AMPK is a heterotrimeric
113	serine/threonine protein kinase that is composed of a catalytic α -subunit, and

114	regulatory β - and γ -subunits. AMPK activity is regulated allosterically by AMP and
115	through phosphorylation in the activation loop of the α -subunit (5). AMPK controls
116	processes relative to tumor development, including cell growth, survival, cell cycle
117	progression, and protein synthesis. The AMPK pathway is linked to tumor growth and
118	proliferation through regulation of the mammalian target of rapamycin (mTOR)
119	pathway. AMPK activation inhibits the growth of a broad spectrum of cancers via
120	mTOR, reduces the proliferation of certain tumor cells and can cooperate with other
121	agents to induce apoptosis. The best-understood roles of mTOR in mammalian cells
122	are related to the control of mRNA translation by the 4E-BP1 (6). In the
123	hypophosphorylation form, 4E-BP1 by mTOR ultimately results in the initiation of
124	translation of certain mRNAs, including those that are needed for cell cycle
125	progression and are involved in cell cycle regulation (7).
126	Defects in fatty acid synthesis or processing contribute to the development of
127	many diseases, including insulin resistance, type 2 diabetes, obesity, non-alcoholic
128	fatty liver disease, and cancer (8). Fatty acid synthase (FASN), a key enzyme for
129	lipogenesis, provides the best opportunity for therapeutic applications because of its
130	tissue distribution and unusual enzymatic activity. FASN is downregulated in most
131	normal human tissues because of the fat in our diet, with the exception of lactating
132	breasts and cycling endometrium. In contrast, FASN is often highly expressed in

133	human cancers, including breast, colorectum, prostate, bladder, ovary, oesophagus,
134	stomach, lung, oral tongue, oral cavity, head and neck, thyroid and endometrium, and
135	also in mesothelioma, nephroblastoma, retinoblastoma, soft tissue sarcomas, Paget's
136	disease of the vulva, cutaneous melanocytic neoplasms including melanoma, and
137	hepatocellular carcinoma (9). This differential tissue distribution makes FASN an
138	attractive target for cancer cells. Moreover, acetyl-CoA carboxylases (ACC) are
139	rate-limiting enzymes in de novo fatty acid synthesis, catalyzing ATP-dependent
140	carboxylation of acetyl-CoA to form malonyl-CoA. Recently, ACC up-regulation has
141	been recognized in multiple human cancers, not only in advanced breast carcinomas
142	but also in preneoplastic lesions associated with increased risk for the development of
143	infiltrating breast cancer (10). Therefore, FASN and ACC might be effective as potent
144	targets for cancer intervention, and the inhibitors developed for the treatment of
145	metabolic diseases would be potential therapeutic agents for cancer therapy.
146	Hispidulin (4',5,7-trihydroxy-6-methoxyflavone) is a naturally occurring
147	flavone commonly found in Saussurea involucrata Kar. et Kir., a rare traditional
148	Chinese medicinal herb (11). Several in vitro studies have demonstrated its potent
149	antioxidative, antifungal, anti-inflammatory, antimutagenic, and antineoplastic
150	properties (12-14). Recently, hispidulin is identified as a potent ligand of the central

151 human BZD receptor *in vitro* (15). It also acts as a partial positive allosteric modulator

152	at $GABA_A$ receptors, penetrates the blood-brain barrier (BBB) and possesses
153	anticonvulsant activity in the central nervous system (CNS) (16). Based on more
154	observations it has been found that hispidulin acts as a potential modulator of CNS
155	activity, prompted us to investigate its antineoplastic activity against GBM. In this
156	work, we examined the effects of hispidulin on GBM cells. We present here, for the
157	first time that AMPK is activated by hispidulin in GBM cells. The activation of
158	AMPK suppresses protein synthesis, lipogenesis, and cell cycle progression in GBM
159	cells. Our study suggests that hispidulin may be useful as a GBM chemopreventive or
160	therapeutic agent.
161	
162	
163	
164	
165	
166	
167	
168	
169	
170	

171 MATERIALS AND METHODS

172	Chemicals. MTT, compound c, PI and antibodies for β -Actin were purchased from
173	Sigma (St. Louis, MO). Hispidulin was purchased from Tocris Bioscience (Bristol,
174	UK). Antibodies for FASN, phospho-ACC (Ser 79), phospho-mTOR (Ser2448),
175	pohspho-4E-BP1 (Thr 37/46), phosphor-AMPK (Thr 172), PARP, p21 and p53 were
176	purchased from Cell Signaling Technology (Beverly, MA). Antibodies for mouse and
177	rabbit conjugated with horseradish persdish peroxidase were purchased from
178	Chemicon (Temecula, CA). Immobilon Western Chemiluminescent HRP Substrate
179	was from Milliore Corporation (Billerica, MA).
180	Cell culture. GBM8401 and GBM8901 human GBM cells were obtained from
181	Bioresources Collection and Reasearch Center (Hsin Chu, Taiwan). These cells were
182	cultured in DMEM/F-12 supplemented with 10% fetal bovine serum (FBS) and 1%
183	penicillin-streptomycin, and were grown at 37°C in a humidified atmosphere of 5%
184	CO ₂ .
185	Cell Proliferation Assays. As described previously (17) , the effects of hispidulin on
186	cell proliferation were examined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl
187	tetrazolium bromide) method.
188	Western blot. Cells (2×10^6) were seeded onto a 100-mm tissue culture dish
189	containing 10% FBS DMEM/F12 and cultured for 24 h. Then cells were incubated in

190 10% FBS DMEM/F12 treating with various agents as indicated in figure legends. 191 After treatment, cells were placed on ice, washed with cold PBS, and lysed in lysis 192 buffer. Western Blot was done as described previously (18). The intensity of the bands 193 was scanned and quantified with NIH image software. **Cell cycle analysis.** Cells (5×10^5) were cultured in 60-mm cell culture dish and 194 195 incubated for 24 h. Then cells were harvested in 15 mL tube, washed with PBS, 196 resuspended in PBS, and fixed in 2 mL of iced 100 % ethanol at -20 °C overnight. 197 Cell pellets were collected by centrifugation, resuspended in 0.5 mL of hypotonic 198 buffer (0.5 % Triton X-100 in PBS and 0.5 µg/ml RNase), and incubated at RT for 30min. Then 1 mL of propidium iodide solution (50 µg/ mL) was added, and the 199 200 mixture was allowed to stand on ice for 30 min. Fluorescence emitted from the 201 propidium iodide-DNA complex was quantitated after excitation of the fluorescent dye by FAC-Scan cytometry (BD Biosciences, San Jose, CA). 202 203 Short hairpin RNA. RNAi reagents were obtained from the National RNAi Core Facility located at the Institute of Molecular Biology/Genomic Research Center, 204 205 Academia Sinica, supported by the National Research Program for Genomic 206 Medicine Grants of NSC (NSC 97-3112-B-001-016). Short hairpin RNAs (shRNAs) were designed to target specific sequences of human AMPK (Clone ID: 207

208 TRCN000000861; Target sequence: 5'-GTT GCC TAC CAT CTC ATA ATA-3'). One

209	day before transfection, cells were seeded at the density of 30-40% without antibiotics.
210	20 nM AMPK shRNAs were transfected into cells by lipofectamine 2000 (Invitrogen,
211	Carlsbad, CA). Cells were incubated for an additional 24h before addition of
212	hispidulin as previously described. The effects of hispidulin on cell proliferation were
213	examined by MTT method.
214	Statistical analysis. All valves were expressed as mean ±SD. Each value is the mean
215	of at least three separate experiments in each groups, Student's t-test was used for
216	statistical comparison. Asterisks indicate that the values are significantly different
217	from the control (*, $P < 0.05$; **, $P < 0.01$).
218	
219	
220	
221	
222	
223	
224	
225	
226	
227	

228 **RESULTS**

229 Hispidulin exhibits potent antiproliferative activity against human GBM cells. To 230 investigate the bioactivity of hispidulin (Figure 1A) in human GBM cells, we treated 231 GBM8401 and GBM8901 cells with different concentrations of hispidulin at 37°C for 48 h, and assessed cell proliferation by MTT assay. The results showed that 232 GBM8401 (Figure 1B) and GBM8901 (Figure 1C) cells were inhibited by hispidulin 233 234 in a dose-dependent manner. The IC_{50} values of hispidulin against GBM8401 and 235 GBM8901 cells were 60 μ M and 40 μ M, respectively. 236 Hispidulin suppresses protein synthesis by activating AMPK to inbibit the **mTOR pathway.** The current focus lies in the finding of components that activate 237 238 AMPK. We next identify whether the antiproliferative effects of hispidulin is by 239 activating AMPK in human GBM cells. GBM8401 and GBM8901 cells were treated with 60 μ M and 40 μ M hispidulin at 37°C for different durations, respectively. 240 Western blot analysis indicated that hispidulin stimulates AMPK phosphorylation in a 241 time-dependent manner (Figure 2A). Those results showed that hispidulin 242 up-regulated AMPK activity and suppressed cell proliferation in human GBM cells. 243 244 mTOR/4E-BP1 pathway controls the protein translation/synthesis in various types of 245 cells. 4E-BP1 is phosphorylated by mTOR upon growth factor stimulation, and then 246 the cells undergo cell cycle progression and proliferation (7). To determine whether

247	hispidulin suppresses the protein synthesis by activating AMPK to inhibit the mTOR
248	pathway, phospho-mTOR and 4E-BP1 were detected by western blotting. The
249	phosphorylation of mTOR (Figure 2B) and 4E-BP1 (Figure 2C) were decreased at
250	12h in GBM8401 and GBM8901 cells. Next, we added the compound c, an AMPK
251	inhibitor, in the absence or presence of hispidulin. The AMPK activity was suppressed
252	by compound c in the presence of hispidulin and the mTOR activity was recovered in
253	GBM8401 (Figure 3A) and GBM8901 (Figure 3B) cells. We hypothesized that
254	hispidulin, by up-regulating AMPK activity, would inhibit mTOR activation and
255	downstream events in human GBM cells.
256	Hispidulin decreases lipid synthesis by decreasing FASN expression and
257	inhibiting ACC activity. The activity of FASN and ACC were known to be
258	negatively regulated by AMPK (19). In the present study, the FASN protein level was
259	decreased (Figure 4A) and ACC was phorsphorylated (Figure 4B) in a time

inhibiting ACC activity. The activity of FASN and ACC were known to be negatively regulated by AMPK (*19*). In the present study, the FASN protein level was decreased (**Figure 4A**) and ACC was phorsphorylated (**Figure 4B**) in a time dependent fashion when GBM8401 and GBM8901 cells were treated with 60μ M and 40μ M hispidulin, respectively. To further study the effect of AMPK in regulating the activity of fatty acid synthesis enzymes. We added the compound c, in the absence or presence of hispidulin. After the treatment of hispidulin, the protein levels of FASN were decreased and phospho-ACC was increased. However, the activities of enzymes of fatty acid synthesis were restored in the presence of compound c in GBM8401

266	(Figure 5A) and GBM8901 (Figure 5B) cells. These results demonstrate that
267	hispidulin inhibits the activity of fatty acid synthesis enzymes through the activation
268	of the AMPK pathway.
269	Hispidulin induces growth arrest and apoptosis. We examined effects of hispidulin
270	on the cell cycle to clarify the mechanism of hispidulin-induced inhibition of
271	proliferation. Hispidulin caused the accumulation of the G0/G1 phase followed by an
272	increase in hypodiploid cells as indicated by apoptotic cells in GBM8401 (Figure 6A)
273	and GBM8901 (Figure 6B) cells. Moreover, we examined the expression of G1
274	related cell cycle control proteins and apoptosis related proteins on western blot
275	analysis. GBM8401 and GBM8901 cells were treated with 60 μ M and 40 μ M
276	hispidulin for indicated durations and used 50 μ g of whole-cell extracts on Western
277	blot analyses. After 12 hours of hispidulin treatment, we found increased levels of p53
278	and p21 in GBM8401 and GBM8901 cells (Figure 6C). Moreover, hispidulin showed
279	a clear apoptosis within 12 hours, showing cleavages for PARP in Western blot
280	analyses (Figure 6D). To further determine whether hispidulin induced inhibition of
281	proliferation by activating AMPK, we added the compound c, an AMPK inhibitor, in
282	the absence or presence of hispidulin. The inhibition of proliferation by hispidulin
283	was resumed in the presence of compound c in GBM8401 (Figure 7A) and
284	GBM8901 (Figure 7B) cells. In addition, we also treated cells with AMPK shRNA to

285	silence the expression of AMPK. AMPK shRNA recovered the inhibition of
286	proliferation by hispidulin in GBM8401 (Figure 7A) and GBM8901 (Figure 7B)
287	cells. We hypothesized that hispidulin, by up-regulating AMPK activity, would inhibit
288	GBM cells proliferation.
289	
290	
291	
292	
293	
294	
295	
296	
297	
298	
299	
300	
301	
302	
303	

304 **DISCUSSION**

305	The previous study illustrates that flavone hispidulin probably acts as a partial
306	positive allosteric modulator at GABAA receptors, penetrates the BBB and possesses
307	anticonvulsant activity in the CNS (15, 16). These observations encouraged us to
308	investigate its antineoplastic activity against GBM. In the field of food and nutrition,
309	the current focus lies in the finding of components that activate AMPK. Here, we
310	show that hispidulin activated AMPK in GBM cells. The activation of AMPK
311	suppressed protein synthesis, lipogenesis, and cell cycle progression. Targeting
312	AMPK signaling by hispidulin may have potential therapeutic implications for GBM
313	and age-related diseases.
314	mTOR, a serine-threonine kinase, plays a key role in the regulation of cellular
315	growth. The mTOR pathway is aberrantly activated in many human cancers. The role
316	of mTOR in tumor acts as a sensor for energy, growth factors and nutrients, all of
317	which are required for protein translation. Thus, approaches to block the pathway are
318	being actively pursued in many laboratories and pharmaceutical companies.
319	Activation of AMPK results in a decrease of mTOR signaling. The AMPK signal
320	system contains some tumor suppressor genes including LKB1, TSC1, TSC2 and p53,
321	and suppresses tumor growth by inhibiting the activity of various proto-oncogene
322	such as PI3K, Akt and ERK (20). Both TSC1 (also named hamartin) and TSC2 (also

323	named tuberin) tumor suppressor protein control the protein synthesis of cell.
324	Activation of AMPK induces activation of the TSC2-TSC1 complex to inhibit mTOR
325	(21). The Eukaryotic translation initiation factor 4E-BP1 is the downstream effector
326	of mTOR. Through this effector mTOR controls the protein translation (22). Data
327	presented here show that the inhibition of protein translation via the AMPK-mTOR
328	pathway by hispidulin in GBM cells is effective.
329	AMPK acts as a fuel gauge by monitoring cellular energy levels (23). FASN and
330	ACC are key enzymes for lipogenesis. AMPK specifically regulated both the
331	phosphorylation and dephosphorylation cycles of ACC and the expression levels of
332	FASN. Acutely activated AMPK phosphorylates and inhibits ACC. Chronically
333	activated AMPK decreases the expression of SREBP1c, thus suppressing the
334	synthesis of ACC, FASN and other lipogenic enzymes (24). A recent study identified
335	that pharmacologically inducing a 'low-energy status' in tumour cells can result in
336	AMPK-induced ACC phosphorylation, FASN downregulation and marked decrease
337	of endogenous lipogenesis. Cancer cells, thus, stopped proliferating and lost their
338	invasive and tumorigenic properties in vitro and in vivo (25). In this study, we show
339	that AMPK is activated by hispidulin, and is required for hispidulin suppression of
340	lipogenesis. From a clinical perspective, these findings justify further work exploring
341	the ability of 'low-energy mimickers' to therapeutically manage lipogenic carcinomas.

342	AMPK also plays the role of energy sensor in cell cycle (26). It seems rational to
343	view AMPK as a survival factor for cancer cells. AMPK raises energy production via
344	the activation of glucose uptake, glycolysis, and fatty acid oxidation in response to
345	ATP-depleting stresses (27). Recent study shows that AMPK is critical for cancer cell
346	adaptation in response to hypoxia or glucose deprivation (28). Solid tumors that
347	outgrow the existing vasculature are continuously exposed to a microenvironment in
348	which the supply of both oxygen and nutrition are quite limited. In accordance with
349	the aforementioned reports and the data documented herein, it seems reasonable to
350	conclude that the inhibition of AMPK in cancer cells may prove useful as an approach
351	for the increased induction of apoptosis in tumor cells after hispidulin treatment.
352	However, some have concluded that AMPK activation may be employed as a
353	component of an anticancer therapy (29). The logic of this approach is predicated on
354	recent observations that AMPK also strongly suppresses cell proliferation. This effect
355	is mediated, in part, by several tumor suppressor proteins associated with the AMPK
356	signaling network, including LKB1 and the tuberous sclerosis complex (TSC2). Jones
357	et al. recently reported that the activation of AMPK induces p53-Ser15
358	phosphorylation in response to glucose deprivation, resulting in replicative senescence
359	(30). The ability of AMPK to promote senescence or to inhibit cell proliferation in
360	response to energy starvation has been interpreted as a check point that couples

361	glucose availability to the progression of the cell cycle; it was implied that the
362	activation of AMPK might promote the conservation of the remaining energy to
363	support the survival and physiological functions of the cell during cell cycle arrest.
364	Our results indicated that hispidulin inhibited the proliferation of GBM cells via the
365	activation of AMPK. Hispidulin treatment inhibited the progression of cell cycle in
366	the G1 phase. Hispidulin increased the expression level of p53 and subsequently
367	enhanced the expression level of p21 resulting in cell cycle arrest in GBM cells. It is
368	likely that induction of p21 promotes growth arrest and exerts a protective effect after
369	AMPK activation.
370	In conclusion, AMPK is activated by hispidulin in GBM cells. When this
371	occurs, a key enzyme involved in protein synthesis, mTOR, is inhibited. In addition,
372	the activity and/or expression of lipogenic enzymes, such as FASN and ACC are
373	decreased. Interestingly, hispidulin blocked the progression of cell cycle at G1 phase
374	and induced apoptosis in GBM cells (Figure 8). Taken together, our study suggests

that hispidulin may be useful as a GBM chemopreventive agent. Nevertheless, 375

additional studies are required to evaluate the efficacy of hispidulin in suitable 376

experimental animal systems. 377

378

379

380 ABBREVIATIONS

381	ACC, Acetyl-CoA carboxylase; AMPK, AMP-activated preotin kinase; CR, Caloric
382	restriction; DMEM, Dulbecco's modified Eagle's medium; DMSO, Dimethyl
383	sulfoxide; 4E-BP1, Eeukaryotic initiation factor 4E-binding protein-1; FASN, Fatty
384	acid synthase; FBS, Fetal bovine serum; mTOR, Mmammalian target of rapamycin;
385	MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyl tetrazolium bromide.
386	
387	
388	
389	
390	ACKNOWLEDGMENT This study was supported by the National Science Council
391	(NSC) Grants 97-2320-B-039-008-MY3, by the China Medical University Grant
392	(CMU98-S-13 and CMU98-OC-04).
393	
394	
395	
396	
397	
391	

399 LITERATURE CITED

400	(1) Furnari, F. B.; Fenton, T.; Bachoo, R. M.; Mukasa, A.; Stommel, J. M.; Stegh, A.;
401	Hahn, W. C.; Ligon, K. L.; Louis, D. N.; Brennan, C.; Chin, L.; DePinho, R. A.;
402	Cavenee, W. K. Malignant astrocytic glioma: genetics, biology, and paths to
403	treatment. Genes Dev. 2007, 21, 2683-2710.
404	(2)Stupp, R.; Hegi, M. E.; Mason, W. P.; van den Bent, M. J.; Taphoorn, M. J.; Janzer,
405	R. C.; Ludwin, S. K.; Allgeier, A.; Fisher, B.; Belanger, K.; Hau, P.; Brandes, A.
406	A.; Gijtenbeek, J.; Marosi, C.; Vecht, C. J.; Mokhtari, K.; Wesseling, P.; Villa, S.;
407	Eisenhauer, E.; Gorlia, T.; Weller, M.; Lacombe, D.; Cairncross, J. G.; Mirimanoff,
408	R. O. Effects of radiotherapy with concomitant and adjuvant temozolomide versus
409	radiotherapy alone on survival in glioblastoma in a randomised phase III study:
410	5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009, 10, 459–466.
411	(3) Koubova, J.; Guarente, L. How does calorie restriction work? Genes 2003, 17,
412	313–321.
413	(4) Cabelof, D. C.; Yanamadala, S.; Raffoul, J. J.; Guo, Z.; Soofi, A.; Heydari, A. R.
414	Caloric restriction promotes genomic stability by induction of base excision repair
415	and reversal of its age-related decline. DNA Repair 2003, 2, 295–307.
416	(5) Fogarty, S.; Hardie, D. G. Development of protein kinase activators: AMPK as a
417	target in metabolic disorders and cancer. Biochim. Biophys. Acta. 2010, 1804,

418	581-591.
419	(6) Wang, X.; Beugnet, A.; Murakami, M.; Yamanaka, S.; Proud, C. G. Distinct
420	signaling events downstream of mTOR cooperate to mediate the effects of amino
421	acids and insulin on initiation factor 4E-binding proteins. Mol. Cell. Biol. 2005,
422	25, 2558–2572.
423	(7) Faivre, S.; Kroemer, G.; Raymond, E. Current development of mTOR inhibitors
424	as anticancer agents. Nat. Rev. Drug Discov. 2006, 5, 671–688.
425	(8) Menendez, J. A.; Vazquez-Martin, A.; Ortega, F. J.; Fernandez-Real, J. M. Fatty
426	acid synthase: association with insulin resistance, type 2 diabetes, and cancer.
427	Clin. Chem. 2009, 55, 425-438.
428	(9) Menendez, J. A.; Lupu, R. Fatty acid synthase and the lipogenic phenotype in
429	cancer pathogenesis. Nat. Rev. Cancer 2007, 7, 763-777.
430	(10) Milgraum, L. Z.; Witters, L. A.; Pasternack, G. R.; Kuhajda, F. P. Enzymes of the
431	fatty acid synthase pathway are highly expressed in <i>in situ</i> breast carcinoma. Clin.
432	Cancer Res. 1997, 3, 2115-2120.
433	(11) Way, T. D.; Lee, J. C.; Kuo, D. H.; Fan, L. L.; Huang, C. H.; Lin, H. Y.; Shieh, P.
434	C.; Kuo, P. T.; Liao, C. F.; Liu, H.; Kao, J. Y. Inhibition of epidermal growth
435	factor receptor signaling by Saussurea involucrata, a rare traditional Chinese
436	medicinal herb, in human hormone-resistant prostate cancer PC-3 cells. J. Agric.

437 *Food Chem.* **2010**, *58*, 3356-3365.

438	(12) Chulasiri, M.; Bunyapraphatsara, N.; Moongkarndi, P. Mutagenicity and
439	antimutagenicity of hispidulin and hortensin, the flavonoids from Millingtonia
440	hortensis L. Environ. Mol. Mutagen. 1992, 20, 307-312.
441	(13) Tan, R. X.; Lu, H.; Wolfender, J. L.; Yu, T. T.; Zheng, W. F.; Yang, L.; Gafner, S.;
442	Hostettmann, K. Mono- and sesquiterpenes and antifungal constituents from
443	Artemisia species. <i>Planta Med.</i> 1999, 65, 64–67.
444	(14) Gil, B.; Sanz, M. J.; Terencio, M. C.; Ferrándiz, M. L.; Bustos, G.; Payá, M.;
445	Gunasegaran, R.; Alcaraz, M. J. Effects of flavonoids on Naja naja and human
446	recombinant synovial phospholipases A2 and inflammatory responses in mice.
447	<i>Life Sci.</i> 1994 , <i>54</i> , 333–338.
448	(15) Kavvadias, D.; Monschein, V.; Sand, P.; Riederer, P.; Schreier, P. Constituents of
449	sage (Salvia officinalis L.) with in vitro affinity to human brain benzodiazepine
450	receptor. Planta Med. 2003, 69, 113–117.
451	(16) Kavvadias, D.; Sand, P.; Youdim, K. A.; Qaiser, M. Z.; Rice-Evans, C.; Baur, R.;
452	Sigel, E.; Rausch, W. D.; Riederer, P.; Schreier, P. The flavone hispidulin, a
453	benzodiazepine receptor ligand with positive allosteric properties, traverses the
454	blood-brain barrier and exhibits anticonvulsive effects. Br. J. Pharmacol. 2004,

455 *142*, 811-820.

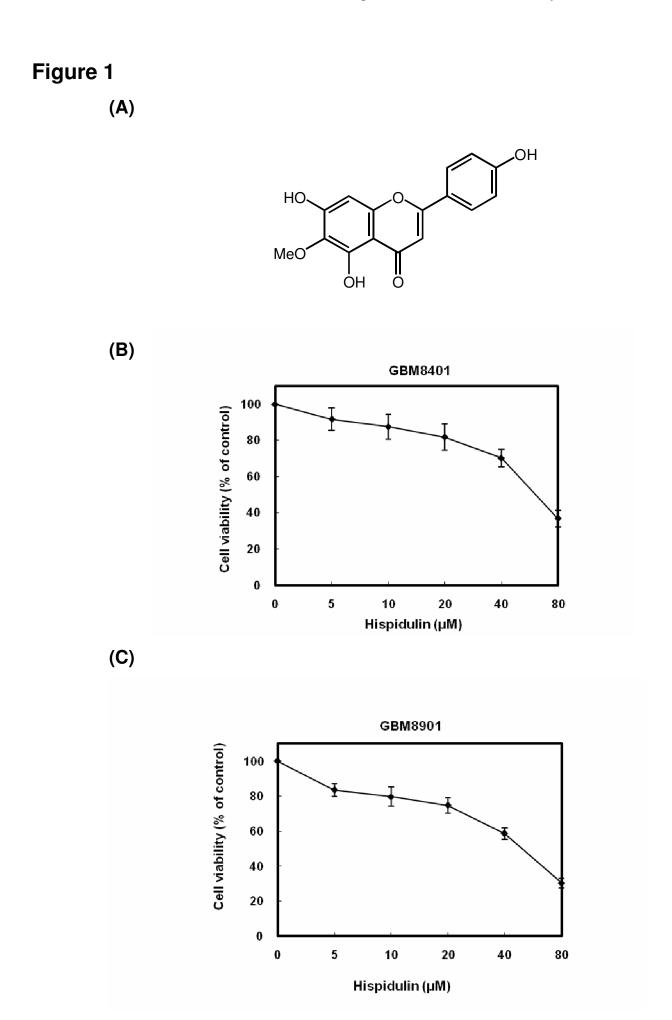
456	(17) Lin, V. C.; Chou, C. H.; Lin, Y. C.; Lin, J. N.; Yu, C. C.; Tang, C. H.; Lin, H. Y.;
457	Way, T. D. Osthole suppresses fatty acid synthase expression in
458	HER2-overexpressing breast cancer cells through modulating Akt/mTOR
459	pathway. J. Agric. Food Chem. 2010, 58, 4786-4793.
460	(18) Lin, J. N.; Lin, V. C.; Rau, K. M.; Shieh, P. C.; Kuo, D. H.; Shieh, J. C.; Chen, W.
461	J.; Tsai, S. C.; Way, T. D. Resveratrol modulates tumor cell proliferation and
462	protein translation via SIRT1-dependent AMPK activation. J. Agric. Food Chem.
463	2010 , <i>58</i> , 1584-1592.
464	(19) Li, J. N.; Gorospe, M.; Chrest, F. J.; Kumaravel, T. S.; Evans, M. K.; Han, W. F.;
465	Pizer, E. S. Pharmacological inhibition of fatty acid synthase activity produces
466	both cytostatic and cytotoxic effects modulated by p53. Cancer Res. 2001, 61,
467	1493-1499.
468	(20) Motoshima, H.; Goldstein, B. J.; Igata, M.; Araki, E. AMPK and cell
469	proliferationAMPK as a therapeutic target for atherosclerosis and cancer. J.
470	Physiol. 2006, 574, 63-71.
471	(21) Kimball, S. R. Interaction between the AMP-activated protein kinase and mTOR
472	signaling pathways. Med. Sci. Sports Exerc. 2006, 38, 1958-1964.
473	(22) Carrera, A. C. TOR signaling in mammals. J. Cell Sci. 2004, 117, 4615-4616.
474	(23) Williams, T.; Brenman, J. E. LKB1 and AMPK in cell polarity and division.

475	Trends Cell Biol. 20	08 , <i>18</i> , 193-198.
-----	----------------------	----------------------------------

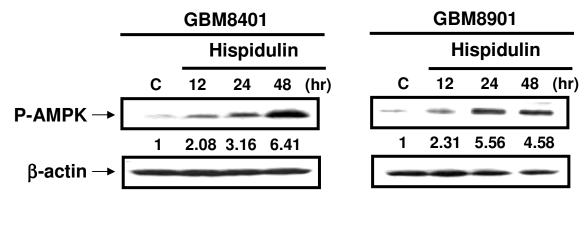
476	(24) Hardie, D. G. Minireview: the AMP-activated protein kinase cascade: the key
477	sensor of cellular energy status. Endocrinology 2003, 144, 5179-5183.
478	(25) Swinnen, J. V.; Beckers, A.; Brusselmans, K.; Organe, S.; Segers, J.;
479	Timmermans, L.; Vanderhoydonc, F.; Deboel, L.; Derua, R.; Waelkens, E.; De
480	Schrijver, E.; Van de Sande, T.; Noël, A.; Foufelle, F.; Verhoeven, G. Mimicry of
481	a cellular low energy status blocks tumor cells anabolism and suppresses the
482	malignant phenotype. Cancer Res. 2005, 65, 2441-2448.
483	(26) Jones, R. G.; Plas, D. R. ; Kubek, S. ; Buzzai, M. ; Mu, J., Xu, Y. ; Birnbaum, M.
484	J.; Thompson, C. B. AMP-activated protein kinase induces a p53-dependent
485	metabolic checkpoint. Mol. Cell 2005, 18, 283-293.
486	(27) Hardie, D. G., Carling, D., and Carlson, M. The AMP-activated/SNF1 protein
487	kinase subfamily: metabolic sensors of the eukaryotic cell? Annu. Rev. Biochem.
488	1998 , <i>67</i> , 821-855.
489	(28) Yun, H.; Lee, M.; Kim, S. S.; Ha, J. Glucose deprivation increases mRNA
490	stability of vascular endothelial growth factor through activation of
491	AMP-activated protein kinase in DU145 prostate carcinoma. J. Biol. Chem. 2005,
492	280, 9963-9972.
493	(29) Luo, Z.; Saha, A. K.; Xiang, X.; Ruderman, N. B. AMPK, the metabolic

494	syndrome and cancer. Trends Pharmacol. Sci. 2005, 26, 69-76.
495	(30) Jones, R. G.; Plas, D. R.; Kubek, S.; Buzzai, M.; Mu, J.; Xu, Y.; Birnbaum, M. J.;
496	Thompson, C. B. AMP-activated protein kinase induces a p53-dependent
497	metabolic checkpoint. Mol. Cell 2005, 18, 283-293.
498	
499	
500	
501	
502	
503	
504	
505	
506	
507	
508	
509	
510	
511	
512	

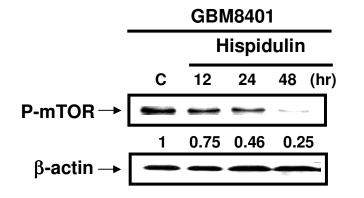
513 Figure Legends

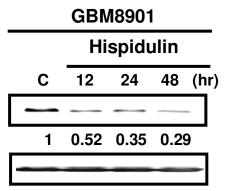

514	Figure 1. Hispidulin inhibits the proliferation of human GBM cells. (A) Chemical						
515	structures of hispidulin. (B) GBM8401 and (C) GBM8901 cells were seeding into						
516	24-well plates in the presence of 10% FBS and after 24 hr treated with various						
517	concentrations of hispidulin at 37 $^{\circ}$ C for 48 hr. The effect on cell growth was						
518	examined by MTT assay, and the percentage of cell proliferation was calculated by						
519	defining the absorption of cells without of hispidulin treatment as 100%. This						
520	experiment was repeated three times. Bar represents the SD.						
521	Figure 2. Hispidulin up-regulates AMPK activity. GBM8401 and GBM8901 cells						
522	were treated with 60 μ M and 40 μ M hispidulin for indicated duration, respectively.						
523	After harvesting, cells were lysed and prepared for western blotting analysis using						
524	antibodies against (A) phospho-AMPK (Thr172), (B) phospho-mTOR (Ser2448), (C)						
525	phospho-4E-BP1 (Thr37/46) and β -actin. Western blot data presented are						
526	representative of those obtained in at least three separate experiments. The values						
527	below the figures represent the change in protein expression normalized to β -actin.						
528	Figure 3. Hispidulin decreases the protein synthesis by activating AMPK to						
529	inhibit mTOR pathway. (A) GBM8401 and (B) GBM8901 cells were incubated with						
530	15 μ M compound c in the absence or presence of hispidulin for 24 hr.						
531	Phospho-AMPK (Thr172), phospho-mTOR (Ser2448), and β -actin were detected by						

532	western blot. Western blot data presented are representative of those obtained in at
533	least three separate experiments. The values below the figures represent the change in
534	protein expression normalized to β -actin.
535	Figure 4. Hispidulin decreases the activity of fatty acid synthesis by inhibiting the
536	expression of FASN and the activity of ACC. GBM8401 and GBM8901 cells were
537	treated with 60 μ M and 40 μ M hispidulin for indicated duration, respectively. After
538	harvesting, cells were lysed and prepared for western blotting analysis using
539	antibodies against (A) FASN, (B) pospho-ACC (Ser79) and β -actin. Western blot data
540	presented are representative of those obtained in at least three separate experiments.
541	The values below the figures represent the change in protein expression normalized to
542	β-actin.
543	Figure 5. Hispidulin decreases the activity of fatty acid synthesis via activating of
544	AMPK. (A) GBM8401 and (B) GBM8901 cells were incubated with 15 μ M
545	compound c in the absence or presence of hispidulin for 24 hr. After harvesting, cells
546	were lysed and prepared for western blotting analysis using antibodies against FASN,
547	phospho-ACC (Ser79), and β -actin. Western blot data presented are representative of
548	those obtained in at least three separate experiments. The values below the figures
549	represent the change in protein expression normalized to β -actin.
550	Figure 6 Hispidulin induces cell cycle arrest and anontosis in CRM cells (A)

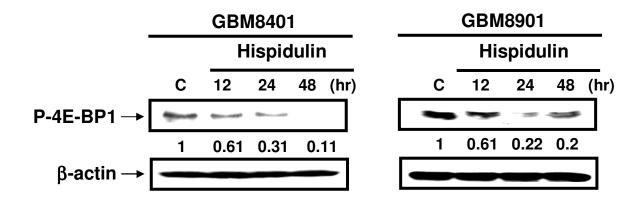

550 Figure 6. Hispidulin induces cell cycle arrest and apoptosis in GBM cells. (A)

551	GBM8401 and (B) GBM8901 cells were treated with 60 μM and 40 μM hispidulin
552	for the indicated duration, respectively. After harvesting, cells were analyzed for
553	propidium iodide-stained DNA content by flow cytometry. The indicated percentages
554	are the mean of three independent experiments, each in duplicate. Bar represent the
555	S.D. GBM8401 and GBM8901 cells were treated with 60 μ M and 40 μ M hispidulin
556	for indicated duration, respectively. After harvesting, cells were lysed and prepared
557	for western blotting analysis using antibodies against (C) p53, and p21, (D) PARP and
558	β -actin. Western blot data presented are representative of those obtained in at least
559	three separate experiments. The values below the figures represent the change in
= < 0	
560	protein expression normalized to β -actin.
560 561	Figure 7. Hispidulin decreases the activity of fatty acid synthesis via activating of
561	Figure 7. Hispidulin decreases the activity of fatty acid synthesis via activating of
561 562	Figure 7. Hispidulin decreases the activity of fatty acid synthesis via activating of AMPK. (A) GBM8401 and (B) GBM8901 cells were incubated with 15 μM
561 562 563	Figure 7. Hispidulin decreases the activity of fatty acid synthesis via activating of AMPK. (A) GBM8401 and (B) GBM8901 cells were incubated with 15 μ M compound c in the absence or presence of hispidulin for 48 hr. GBM8401 and
561 562 563 564	Figure 7. Hispidulin decreases the activity of fatty acid synthesis via activating of AMPK. (A) GBM8401 and (B) GBM8901 cells were incubated with 15 μ M compound c in the absence or presence of hispidulin for 48 hr. GBM8401 and GBM8901 cells were transfected with 50 nmol/L AMPK α 1 shRNA using
561 562 563 564 565	Figure 7. Hispidulin decreases the activity of fatty acid synthesis via activating of AMPK. (A) GBM8401 and (B) GBM8901 cells were incubated with 15 μ M compound c in the absence or presence of hispidulin for 48 hr. GBM8401 and GBM8901 cells were transfected with 50 nmol/L AMPK α 1 shRNA using lipofectamine. After twenty-four hour transfection, cells were treated with hispidulin
 561 562 563 564 565 566 	Figure 7. Hispidulin decreases the activity of fatty acid synthesis via activating of AMPK. (A) GBM8401 and (B) GBM8901 cells were incubated with 15 μ M compound c in the absence or presence of hispidulin for 48 hr. GBM8401 and GBM8901 cells were transfected with 50 nmol/L AMPKa1 shRNA using lipofectamine. After twenty-four hour transfection, cells were treated with hispidulin for 48 hr. The effect on cell growth was examined by MTT assay, and the percentage
 561 562 563 564 565 566 567 	Figure 7. Hispidulin decreases the activity of fatty acid synthesis via activating of AMPK. (A) GBM8401 and (B) GBM8901 cells were incubated with 15 μ M compound c in the absence or presence of hispidulin for 48 hr. GBM8401 and GBM8901 cells were transfected with 50 nmol/L AMPK α 1 shRNA using lipofectamine. After twenty-four hour transfection, cells were treated with hispidulin for 48 hr. The effect on cell growth was examined by MTT assay, and the percentage of cell proliferation was calculated by defining the absorption of cells without of

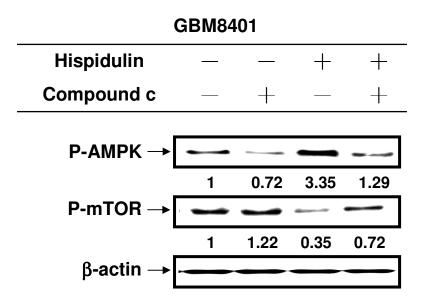

- that of the control (*, P < 0.05; **, P < 0.01). 570
- <text> 571 Figure 8. A schematic summary for the anti-GBM cells mechanisms of hispidulin
- 572 shown in the present study.

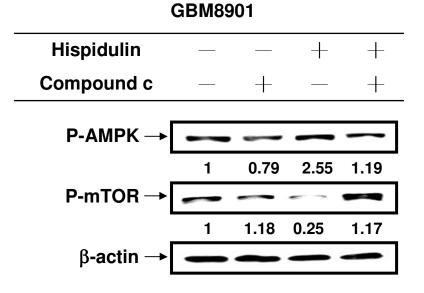


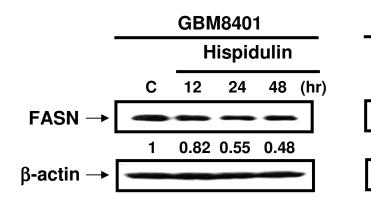
(A)



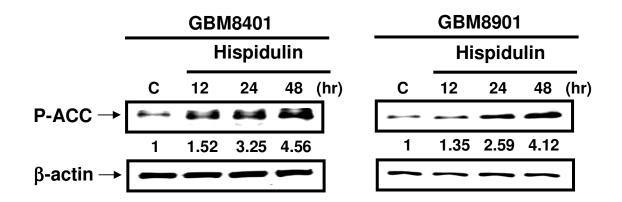
(B)



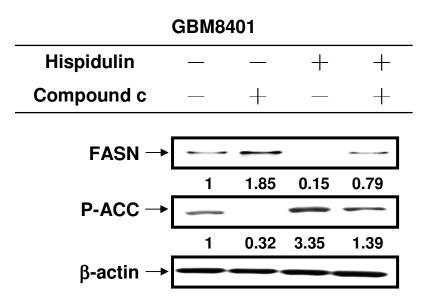

(C)


(A)

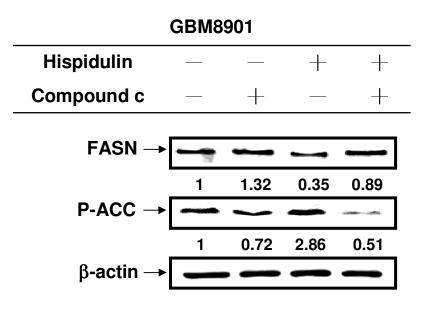
(B)

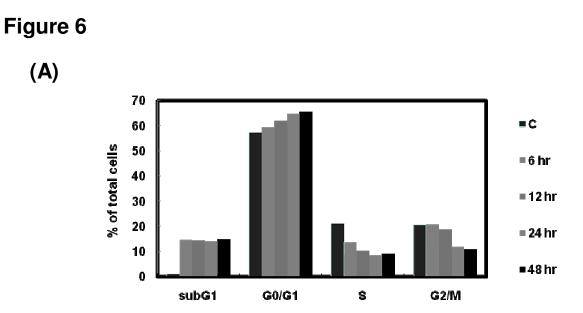


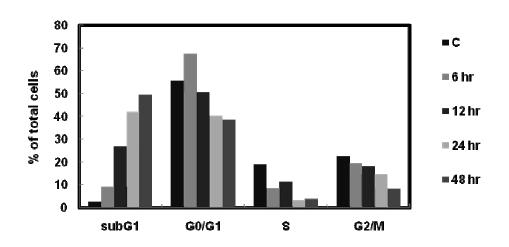
(A)

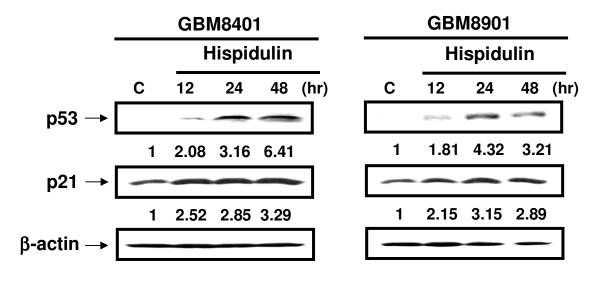


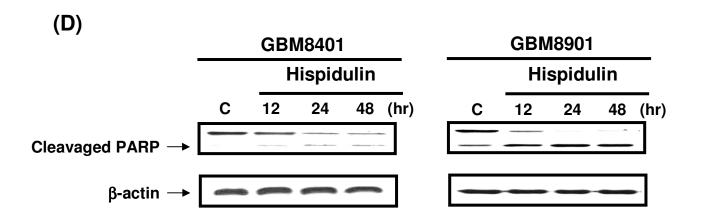
GBM8901								
Hispidulin								
С	12	24	48	(hr)				
	1	-	-					
1	0.72	0.38	0.17	7				
I				r				


(B)

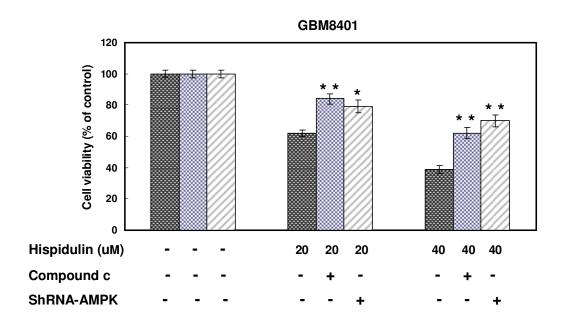

(A)


(B)

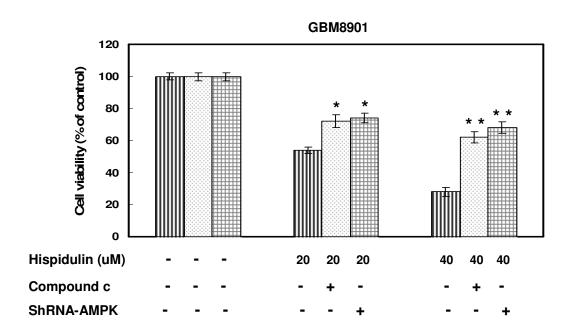

ACS Paragon Plus Environment

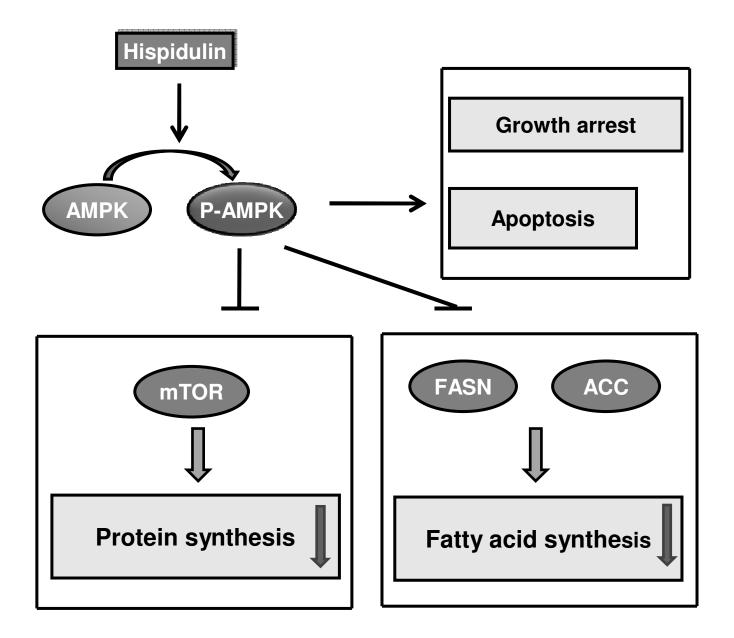


(B)



(C)





(A)

(B)

